Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Controlling the Heat Release in HCCI Combustion of DME with Methanol and EGR

2010-05-05
2010-01-1489
The effects of methanol and EGR on HCCI combustion of dimethyl ether have been tested separately in a diesel engine. The engine was equipped with a common rail injection system which allowed for random injection of DME. The engine could therefore be operated either as a normal DI CI engine or, by advancing the injection timing 360 CAD, as an HCCI engine. The compression ratio of the engine was reduced to 14.5 by enlarging the piston bowls. The engine was operated in HCCI mode with DME at an equivalence ratio of 0.25. To retard the combustion timing, methanol was port fuel injected and the optimum quantity required was determined. The added methanol increased the BMEP by increasing the total heat release and retarding the combustion to after TDC. Engine knock was reduced with increasing quantities of methanol. The highest BMEP was achieved when the equivalence ratio of methanol was around 0.12 at 1000 RPM, and around 0.76 at 1800 RPM. EGR was also used to retarding the timing.
Technical Paper

The Prediction of Autoignition in a DME Direct Injection Diesel Engine

2000-06-19
2000-01-1827
The ignition delay under various temperature and pressure conditions considering volumetric change is investigated both by experiments and simulation to give some basic data of ignition delay for a DME DI diesel engine. The combustion process in a DME direct injected diesel engine was also observed to help understanding of the difference between DME combustion and that of a diesel fuel. For DME fuel, it was clear that the luminous flame duration is much shorter than that of diesel fuel. The calculated results of ignition delay for high equivalence(ϕ =0.4 in this study) showed good accord qualitatively to those of measured at wide range of temperature and pressure conditions investigated in this work. There exists the negative temperature coefficient region near the temperature of 800K. This study shows basic guideline for optimal injection timing for DME fueled compression ignition engines.
Technical Paper

Conversion of Nitric Oxide to Nitrogen Dioxide Using Hydrogen Peroxide

2000-06-19
2000-01-1931
Detailed chemical kinetic model of hydrogen peroxide (H2O2) into diesel exhaust gas has been executed to investigate its effect on the removal of nitric oxide(NO) by changing exhaust gas temperature and H2O2 addition amount. Flux analysis has also been done to clarify which reaction mainly affects NO-to-NO2 conversion. From the results of this study, it is shown that the optimal temperature condition to maximize the removal of NO exists near at 500K for OH addition condition, while that for H2O2 addition exists near at 800K. It is also shown that temperature window for the removal of NO becomes widened as the initial temperature of the exhaust gas increases, and NO-to-NO2 conversion rate decreases in proportion to the concentration of hydrocarbon(HC), although that of the total NOx remains the same level regardless of HC concentration. Finally, it is shown that HO2 + NO → NO2 + OH is mainly responsible for NO-to-NO2 conversion.
Technical Paper

KIVA Simulation for Mixture Formation Processes in an In-Cylinder Injected LPG SI Engine

2000-10-16
2000-01-2805
This is a preliminary work for the development of a stratified combustion engine using liquefied petroleum gas(LPG) as an alternative fuel. The main objective of this research is to find out the optimizing engine parameters from the viewpoint of mixture formation with the aid of simulation, where the KIVA_ code was used. The combustion characteristics of LPG and gasoline are different because of their different physical properties. Therefore, the numerical simulation was performed for optimizing engine parameters by changing the piston and cylinder geometry, as well as injection conditions. Result showed that geometry of combustion chamber has a great influence on mixture stratification. Also, weaker swirl seems to be better for mixture formation in the vicinity of the spark plug.
Technical Paper

Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine

2000-03-06
2000-01-0329
In this study, a homogeneous mixture of natural-gas and air was used in a compression ignition engine to reduce NOx emissions and improve thermal efficiency. In order to control ignition timing and combustion, a small amount of DME was mixed with the natural-gas. Engine performance and the exhaust characteristics were investigated experimentally. Results show the following: the engine can run over quite a large load range if a certain amount of DME is added into natural-gas. By optimizing the proportion of DME to natural-gas, NOx emissions can be lowered to near zero levels if the mixture is lean enough. Thermal efficiency is higher than that obtained with normal diesel fuel operation.
Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Performance of NOX Catalyst in a DI Diesel Engine Operated with Neat Dimethyl Ether

1999-10-25
1999-01-3599
An experiment was conducted with a direct injection Diesel engine operated with neat dimethyl ether (DME). Main focus of this research is to investigate the performance of the catalysts designed for NOx reduction, such as Co–alumina and Sn–alumina catalysts, for the reduction of NOX and other unburned species contained in the exhaust gas. In the experiments, DME concentration in the exhaust gas was changed by adding extra DME before the catalytic reactor, which is the important experimental parameter in the research. Results showed that NOX reduction rate was not so high without any DME addition, because the content of unburned DME, reducing agent, is very low in the DME engine exhaust gas. However, NOX reduction rate increased with increase in DME content and it reached around 80% with enough DME addition. The NOX reduction rate increased with increase in reaction temperature up to around 300 °C.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
Technical Paper

Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles

1999-05-03
1999-01-1513
Performance and emissions of an LPG lean burn engine for heavy duty vehicles were measured. The piston cavity, swirl ratio, propane - butane fuel ratio, and EGR were varied to investigate their effects on combustion, and thus engine performance. Three piston cavities were tested: a circular flat-bottomed cavity with sloped walls (called the “bathtub” cavity), a round bottomed cavity (called the “dog dish” cavity), and a special high-turbulence cavity (called the “nebula” cavity). Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. It was capable of maintaining leaner combustion, thus resulting in the lowest NOx emissions. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. In general, as the propane composition increased, cyclic variation fell, NOx emissions increased, and thermal efficiency was improved.
Technical Paper

Observation of Flame Propagation in an LPG Lean Burn SI Engine

1999-03-01
1999-01-0570
Using an extended bottom view piston having a quartz window, flame propagation observation and flame contour analysis were carried out to investigate the combustion characteristics of a heavy-duty type LPG lean burn engine. The swirl ratio and piston cavity configuration were varied to investigate their effects on combustion and engine performance. Gradual reduction of NOx but increased hydrocarbon emissions were measured for leaner mixtures compared to the stoichiometric operation. High swirl apparently accelerated the initial flame kernel development, as evidenced by a shorter crank angle interval from the spark ignition to the maximum cylinder pressure. The ‘D’ type cavity, with an increased squish area located below the intake valve, was shown to have the shortest burn duration among the piston cavities tested. The experimental flame propagation observation procedure was shown to be useful for the study of the combustion process in engines.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Development of LPG SI and CI Engines for Heavy Duty Vehicles

2000-06-12
2000-05-0166
Development of LPG SI and CI engines for heavy duty vehicles has been carried out. In order to measure the performance and emissions of an LPG lean burn SI engine, the piston cavity, swirl ratio, and propane-butane fuel ratio were varied and tested. Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. A feasibility study of an LPG DI diesel engine also has been carried out to study the effectiveness of the selected cetane enhancing additives:Di-tertiary-butyl peroxide (DTBP). When more than 5 wt% DTBP was added to the base fuel, stable engine operation over a wide range of engine loads was possible. The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Numerical Analysis of Carbon Monoxide Formation in DME Combustion

2011-11-08
2011-32-0632
Dimethyl ether (DME) is an oxygenated fuel with the molecular formula CH₃OCH₃, economically produced from various energy sources, such as natural gas, coal and biomass. It has gained prominence as a substitute for diesel fuel in Japan and in other Asian countries, from the viewpoint of both energy diversification and environmental protection. The greatest advantage of DME is that it emits practically no particulate matter when used in compression ignition (CI) engine. However, one of the drawbacks of DME CI engine is the increase carbon monoxide (CO) emission in high-load and high exhaust gas circulation (EGR) regime. In this study, we have investigated the CO formation characteristics of DME CI combustion based on chemical kinetics.
Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
X